Evaluation of TRMM-3B42V7 and PERSIANN-CDR daily-precipitation products for the southern slopes of Alborz mountains, Iran |
Paper ID : 1196-SMPR |
Authors: |
Shahram Khalighi-Sigaroodi *1, Esmatullah Ghaljaee1, Alireza Moghaddam Nia1, Arash Malekian1, Fan Zhang2 1Faculty of Natural Resources, University of Tehran, Karaj, Iran 2Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China |
Abstract: |
The density of rain gauges in many regions is lower than standard. Therefore, the use of satellite data to overcome this deficiency is increasing day to day. The results from different satellite products show a significant difference. The main objective is to investigate the accuracy of the daily precipitation data of TRMM and PERSIANN satellites products in the southern slopes of Alborz mountains, Iran. For this purpose, satellite precipitation data were compared with ground measured precipitation data of 12 synoptic stations over a 15- year period. The statistical criteria of MAE, RMSE, and Bias were used to assess error and the statistical indices of POD, FAR, and CSI was used to evaluate the recognition rate of occurrence or non-occurrence of precipitation. The results showed that there is a low correlation between satellite precipitation data and ground measured precipitation data, and the lowest and the highest values of correlation coefficient are from 0.228 to 0.402 for TRMM and from 0.047 to 0.427 for PERSIANN, respectively. However, there is a theoretical consensus on other assessment parameters, so that TRMM data is preferable in terms of the amount of data bias and the False Alarm Ratio (FAR) and PERSIANN data is superior in terms of RMSE, POD, and CSI. Also, it seems that in the study region, both of TRMM and PERSIANN have overestimated the number of daily precipitation events, so that the number of daily precipitation events was estimated about 125% and 200% of ground stations by TRMM and PERSIANN, respectively. |
Keywords: |
Precipitation; Error assessment; TRMM-3B42 V7; PERSIANN-CDR; Southern slopes of Alborz mountains of Iran |
Status : Paper Accepted (Oral Presentation) |